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By many kinetic and mechanistic studies on the SO2 extrusion reaction of 

substituted sulfolenes, 
1 

it has been elucidated that the reaction proceeds 

via concerted, suprafacial (disrotatory) process, in accord with the orbital 

symmetry conservation rule. 
2 

Strained sulfolene, such as thiophene dioxide dimer (l), has been pos- 

tulated as an intermediate to give dihydrobenzothiophene dioxide by SO2 
. 

extrusion in the dimerization reaction of thiophene dioxide (eq. l).> 

Similar extrusion of sulfur atom4 or sulfur monooxide 4c has also been 

reported for 7-thiabicyclo[2.2.1lhepta-2,5-diene or corresponding sulfoxide, 

respectively. 

The facts of the enol form participation in the solvolyses of anti-7- 

tosyloxybicyclo[2.2.llheptan-2-one5 and 3-(2-tosyloxyethyl)cyclopentanone 6 

and the facile SO 
2 

extrusion of 1 stimulated us to investigate the behavior 
?J 

of 2-0x0-(2) and 2,5-dioxo-7-thiabicyclo[2,2.llheptane-7,7-dioxide 7 (3). 
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Thermolyses of 2 and 3 giving cyclohexen-3-one and hydroquinone, respec- 
% ,L 

tively, in quatitative yields, took place at relatively low temperatures 

(22OOC for ; and 16OOC for i) cornpaired with the thermolysis of 7-thiabi- 

cyclo[2.2.l]heptane dioxide ($), which was reported to occur only at much 

elevated temperature (520°C).8 (eq. 2). 

0 OH 
160°C 

0 
+ so2 

z (-100%) 

(2) 

520°C + so2 

2. (60%) 

In order to gain further insight into this facile SO2 extrusion reaction, 

kinetics of the thennolyses for ,$ and i were investigated. Rate measurements 

were carried out on the basis of the decrease of the intensity of the car- 

bony1 absorption in ir (1752 cm 
-1 

and 1760 cm 
-1 

for $ and 3, respectively). 
% 

The rate of thennolysis followed first-order kinetics up to 60% conversion. 

The activation parameters shown in Table 1 clearly indicate that thermolyses 

of 2 and z proceed mechanistically in a different manner, that is, thermo- 
'L 

lysis of 2 is governed mainly by enthalpy of activation, while thermolysis 
,L 

of 3 by entropy of activation. The strikinly large entropy of activation 
*I, 

(75.7 eu.) for the decomposition of z may be reasonably compared with the 

negatively large entropy of activation (-78.5 eu.) observed for the copoly- 

merization of isobutene and S02. 
9 

This seems to suggest the (stepwise) 

fission of carbon-sulfur bond in 3 to be the rate determining. The activa- 

tion 

rate 

parameters for 2 may be compatible with the enol participation in the 

determining step" followed by the concerted SO2 expulsion. 

One plausible rationale for this drastic mechanistic change going from 

2 to 
*I, 

3 may be offered in view of a probably weakened sulfur-carbon bond 
I, 
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Table 1. First order rate constant and activation parameters 

for the thermolyses of $ and i in KBr pellet. 

AHf ASf AF+ Temp(+'C) 

(kcal/mole) (cal/deg) (kcal/mole) 

130.0 (5.70 + 0.08) x 1o-5 23.7 -17.8 30.9 

2 140.0 (1.21 + 0.09) x 10 -4 
'L - 

150.0 (2.42 + 0.12) x 10 -4 

88.9 (3.99 + 0.13) x 1o-5 

3 98.9 
% 

(3.09 + 0.15) x 1o-4 

108.0 (2.32 2 0.11) x 1O-3 55.3 75.7 26.4 

caused by introduction of two carbonyl groups in a position where the dipoles 

of sulfonyl and carbonyl groups are arranged each other in the destabilizing 

direction. 
11 
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